WNE Linear Algebra Final Exam

Series A

10 March 2016

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and its series.

Problem 1.

Let $V = \lim((1, 1, 0, -1, 0), (0, 1, 1, 0, 2), (2, 3, 1, -2, 2), (1, 0, -1, -1, -2))$ be a subspace of \mathbb{R}^5 .

- a) find dimension of V and a system of linear equations which set of solutions is equal to V,
- b) let $w = (1, 4, 3, -1, t) \in \mathbb{R}^5$. For which $t \in \mathbb{R}$ the subspace lin(w) is a subset of V, i.e. $\lim(w) \subset V$?

Problem 2.

Let $\alpha_1 = (1, 0, 2), \alpha_2 = (0, 1, 2), \alpha_3 = (1, 0, 3)$ be three vectors in \mathbb{R}^3 .

- a) which of the sequences below are ordered bases of \mathbb{R}^3 ? give a short explanation in each case
 - i) $(\alpha_1, \alpha_2 \alpha_1, 2\alpha_3),$
 - ii) $(\alpha_1, \alpha_2),$
 - iii) $(\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_3, \alpha_2 + \alpha_3).$
- b) find coordinates of the vector $\alpha_1 + \alpha_2 \alpha_3$ relative to the ordered basis ($\alpha_1 + \alpha_2 \alpha_3$) $\alpha_2, \alpha_2, \alpha_3$).

Problem 3. Let $A = \begin{bmatrix} s & 1 & 1 \\ 0 & 3 & 2 \\ 0 & -1 & 0 \end{bmatrix} \in M(3 \times 3; \mathbb{R}).$

a) check if matrix A is diagonalizable for s = 2,

b) for s = 3 find matrix $C \in M(3 \times 3; \mathbb{R})$ such that $C^{-1}AC = \begin{bmatrix} 3 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix}$ for some $a, b \in \mathbb{R}$.

Problem 4.

Let $\mathcal{A} = ((1, 2, 0), (0, 1, 1), (1, 2, 1))$ be an ordered basis of \mathbb{R}^3 and let $\mathcal{B} = ((1, 1), (1, 0))$ and \mathcal{C} be ordered bases of \mathbb{R}^2 . The linear transformation $\varphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ is given by the matrix $M(\varphi)_{\mathcal{A}}^{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$. The basis \mathcal{C} of \mathbb{R}^2 is given by the matrix $M(id)_{\mathcal{C}}^{\mathcal{B}} = \begin{vmatrix} 2 & 1 \\ -1 & 0 \end{vmatrix}$.

- a) compute basis \mathcal{C} ,
- b) find formula of φ .

Problem 5.

Let V = lin((1, 1, 0), (0, 1, 1), (2, 3, 1)) be a subspace of \mathbb{R}^3 .

- a) find an orthonormal basis of V^{\perp} ,
- b) compute the orthogonal projection of w = (0, 1, 0) onto V.

Problem 6.

 Let

$$A = \left[\begin{array}{rrr} 1 & 1 & r \\ 0 & 0 & 1 \\ 1 & 2 & 1 \end{array} \right].$$

- a) for which $r \in \mathbb{R}$ the matrix A is invertible?,
- b) for which $r \in \mathbb{R}$ the entry in the first row and the first column of the matrix A^{-1} is equal to -2?

Problem 7.

- The affine space $H \subset \mathbb{R}^3$ is given by the equation $x_1 + x_2 + x_3 = 1$.
- a) find a parametrization of the line L perpendicular to H and passing through P = (2, 0, 1),
- b) find the orthogonal projection of P onto H.

Problem 8.a) bring the following linear programming problem to a standard form $x_1 - 3x_2 \longrightarrow max$

$$\begin{cases} x_1 - x_2 + 2x_3 \leqslant 1 \\ x_1 \geqslant 2 \\ x_2, x_3 \geqslant 0 \end{cases}$$

b) solve the following linear programming problem using simplex method $2x_3 + 2x_4 \longrightarrow min$

$$\begin{cases} x_1 & + x_4 & = 1 \\ x_2 & - x_4 & = 2 \text{ and } x_i \ge 0 \text{ for } i = 1, \dots, 4 \\ x_3 & + 3x_4 & = 6 \end{cases}$$